

Syllabus

BIO 222 - Cell Biology

General Information

Date February 7th, 2013

Department Science and Technology

Course Prefix BIO

Course Number 222

Course Title Cell Biology

Course Information

Catalog Description This course is designed to provide students with an intense study of cell structure and function. A wide range of topics will be covered and will include: biochemistry, membrane structure and function, organelle structure and function, the cell cycle and cancer, necrosis and apoptosis, cell signaling, and the cellular basis of tissue structure.

Credit Hours 3

Lecture Contact Hours 3

Lab Contact Hours 0

Other Contact Hours 1

Grading Scheme Letter

Prerequisites

None

Co-requisites

None

First Year Experience/Capstone Designation

May 16th, 2023 1:22 pm 1 of 3

This course DOES NOT satisfy the outcomes applicable for status as a FYE or Capstone.

SUNY General Education

This course is designated as satisfying a requirement in the following SUNY Gen Ed category

None

FLCC Values

Institutional Learning Outcomes Addressed by the CourseNone

Course Learning Outcomes

Course Learning Outcomes

- 1. Students will be able to identify, describe, and explain the molecular action of a pharmaceutical drug
- 2. Students will be able to critically analyze scientific literature in the field of cell biology
- 3. Students will be able to discuss complex scientific information in a group setting and will be able to lead portions of the discussion
- 4. Students will be able to identify and explain current experimental methods used in cell biology research

Outline of Topics Covered

- I. Introduction to Cell Biology
- A. History and discovery
- B. Microscopy
- C. Basic cell structure
- D. Cell diversity
- II. Cell chemistry
- A. Inorganic cell chemistry
- B. Chemical bonds
- C. Organic molecules and cell chemistry
- D. lons and membrane potential
- III. Cell energetics
- A. Enzyme reactions and activated carrier molecules
- B. Reaction energetics
- C. Glycolysis and fermentation
- D. Citric Acid Cycle
- E. Electron Transport Chain

May 16th, 2023 1:22 pm 2 of 3

- IV. Protein structure and function
- A. Protein structure and shape
- B. Protein-protein interactions
- C. Role of proteins in cell function
- V. DNA and genetics
- A. DNA Structure and function
- B. DNA replication and repair
- C. Transcription and transcription factors.
- D. Post transcriptional modifications
- E. Translation
- VI. Membrane structure and function
- A. Lipid bilayer chemistry
- B. Membrane proteins
- 1. Carrier proteins
- 2. Ion channels
- C. Membrane potential
- D. Action potential
- VII. Intracellular compartments and protein transport
- A. Membrane bound organelles
- B. Protein sorting
- C. Vesicular transport and membrane fusion
- D. Secretory Pathways
- E. Endocytic pathways
- VIII. Cell signaling
- A. Principles of cell signaling
- B. G-protein linked receptors
- C. Enzyme linked receptors
- D. Adhesion proteins and extracellular matrix
- IX. The cell cycle
- A. Overview of the cell cycle
- B. Cell cycle control system
- C. Control of cell numbers
- D. Cell cycle and cancer
- E. Apoptosis
- X. Tissues
- A. The extracellular matrix
- B. Epithelial tissues and cell-cell junctions
- C. Tissue maintenance, repair and renewal
- D. Tissue development
- E. Tissue engineering and biotechnology

May 16th, 2023 1:22 pm 3 of 3