

Syllabus

ARC 248 Structural Design

General Information

Date

September 25th, 2018

Author

Matthew Rischpater

Department

Science and Technology

Course Prefix

ARC

Course Number

248

Course Title

Structural Design

Course Information

Credit Hours

4

Lecture Contact Hours

3

Lab Contact Hours

2

Other Contact Hours

0

Catalog Description

ARC 248 Structural Design is intended for Architectural Technology majors. Students will be introduced to the fundamental concepts related to structural design and analysis. Topics covered include 1) forces, 2) trusses, 3) shear & bending moment diagrams, 4) properties of sections, 5) estimating live & dead loads, 6) designing wood beams, columns, & connections, and 7) designing steel beams, columns, and connections. The material covered in this class is presented in a lecture format.

Key Assessment

This course does not contain a Key Assessment for any programs

Prerequisites

MET 216

Co-requisites

None

Grading Scheme

Letter

First Year Experience/Capstone Designation

This course DOES NOT satisfy the outcomes applicable for status as a FYE or Capstone.

SUNY General Education

This course is designated as satisfying a requirement in the following SUNY Gen Ed category None

January 7th, 2019 9:49 am 1

FLCC Values

Institutional Learning Outcomes Addressed by the Course

Vitality Inquiry Perseverance Interconnectedness

Course Learning Outcomes

Course Learning Outcomes

- 1. Employ algebraic and graphic methods for structural analysis.
- 2. Compare various structural options to best integrate with architectural intent.
- 3. Analyze structural components to identify and resolve forces and reactions.
- 4. Determine structural components from calculations, formulas, tables and graphs for design of appropriate and efficient structural systems.

Program Affiliation

This course is not required as a core course in a program

Outline of Topics Covered

Introduction

- · Forces Acting on a Building
- Code Requirements

Working with Forces

- Adding Force Vectors
- · Finding Resultant Forces
- · Separating a Force into Horizontal & Vertical Components

Laws of Equilibrium

•
$$\Sigma H = 0$$
, $\Sigma V = 0$, $\Sigma M = 0$

Analyzing a Truss

Direct Stress & Deformation

- f = P / A (Stress = Force / Area)
- · Modulus of Elasticity

Analysis of Beams

- $\Sigma H = 0$, $\Sigma V = 0$, $\Sigma M = 0$
- Finding Reactions
- · Shear Diagrams
- Moment Diagrams
- · Properties of Sections
- Flexure Formula: M = f S

January 7th, 2019 9:49 am 2/3

• Horizontal Shear: fv = VQ / Ib

Steel Design

- Beams
- Columns
- Connections

Wood Design

- Beams
- Columns
- Connections

January 7th, 2019 9:49 am 3/3